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Abstract

We conduct a systematic investigation of design choices
in training contrastive vision-language models using the
MS-COCO dataset. Our study examines backbone archi-
tectures (ResNet vs. Vision Transformer), contrastive loss
formulations (CLIP loss, semi-hard negative mining, and
SigLIP sigmoid loss), training strategies (full fine-tuning
vs. frozen backbones), and parameter-efficient fine-tuning
through LoRA adapters. We evaluate models on down-
stream Semantic Image Retrieval task using Recall@K met-
rics for semantic image retrieval and visualize embedding
spaces through t-SNE projections. Our results also reveal
that parameter-efficient methods achieve competitive per-
formance while substantially reducing computational re-
quirements, and that loss function selection determines se-
mantic alignment quality but the effect of it on small-scale
datasets are minimal.
The codebase for the project can be found at:
github.com/ebrahimpichka/DL-project

1. Introduction
1.1. Background and Motivation

Multimodal vision-language representation learning
learns shared embedding spaces that align visual and textual
concepts. Large-scale contrastive models like CLIP [13]
and ALIGN [8] have demonstrated remarkable zero-shot
capabilities, but their computational demands and the un-
certainty about which design decisions most impact perfor-
mance create barriers for resource-constrained researchers.

In this project, we conduct a systematic investigation
of design choices in contrastive vision-language models
trained on the MS-COCO dataset [12]. Our dual-encoder
architecture follows the CLIP framework (Figure 2), where
separate image and text encoders map their inputs into a
shared embedding space through contrastive learning. The
practical motivation for this study stems from a critical lim-
itation in current image-text retrieval systems: they often

Figure 1: t-SNE plot of our best-performing text-image embed-
ding space on a subset of COCO categories (20 samples per each).
Circles/triangles denote image/text embeddings. Dashed lines
connect matched image-text pairs. The visualization demonstrates
strong semantic grouping where embeddings of the same category
group together regardless of modality. This model awas trained
using ViT-L/16 and BERT-base as the image and text encoder.

fail to generalize beyond the exact wording of training cap-
tions. For instance, querying the COCO dataset explorer for
“car” returns over 12,000 images, while semantically equiv-
alent terms like “automobile,” “vehicle,” or “driver” return
zero results. This brittleness suggests that many systems
memorize caption wording rather than learning true seman-
tic relationships, limiting their practical utility for natural
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language image search.

1.2. Related Work and Research Gap

Current practice in multimodal retrieval is dominated by
large-scale contrastive models that require massive com-
putational resources and web-scale datasets. The origi-
nal CLIP [13] trained on 400 mil image-text pairs, while
ALIGN [8] used 1.8 billion noisy web-scraped pairs. Sub-
sequent architectures have explored various improvements:
BLIP [11] introduced caption filtering and bootstrapping
techniques, CoCa [16] unified contrastive and generative
objectives, and BLIP-2 [10] demonstrated efficient training
through frozen pretrained encoders. Loss function design
has also evolved, with SigLIP [17] showing that sigmoid-
based losses enable training with larger batch sizes com-
pared to the standard softmax contrastive loss.

For semantic image retrieval specifically, VSE++ [4] pi-
oneered the use of hard negative mining to improve rank-
ing performance, while cross-attention approaches [9] in-
troduced fine-grained region-word alignment. Recent work
has further refined alignment strategies: ALIP [15] lever-
ages synthetic captions with adaptive weighting to mitigate
noisy data, HiCLIP [6] incorporates hierarchy-aware atten-
tion to capture semantic hierarchies, and SoftCLIP [5] re-
laxes CLIP’s rigid one-to-one constraint for more flexible
cross-modal alignment. More recently, RankCLIP [18] ex-
tends beyond pairwise matching by introducing list-wise
ranking consistency that exploits many-to-many relation-
ships within and across modalities. The underlying con-
trastive learning framework builds upon self-supervised
methods like SimCLR [1] and MoCo [2], which estab-
lished principles about augmentation strategies and large-
batch training.

Despite these advances, a critical research gap remains:
while we know that massive data scale improves perfor-
mance, we lack systematic understanding of which architec-
tural and training decisions most impact embedding quality
when working with moderate-scale datasets and computa-
tional budgets. Current models either demand web-scale
data or fail on synonym-based retrieval when trained on
academic-scale datasets. This creates practical challenges
for researchers and practitioners who need strong semantic
generalization without massive computational resources.

1.3. Research Questions and Contributions

This work addresses the following research questions
through controlled experimentation on MS-COCO:

1. Backbone Architecture: How do different visual en-
coders (ResNet vs. Vision Transformer) affect embed-
ding quality and training dynamics?

2. Loss Function Design: What is the comparative
impact of standard CLIP contrastive loss, semi-hard

negative mining (VSE++), and sigmoid-based loss
(SigLIP) on retrieval performance?

3. Training Strategy: How does full fine-tuning com-
pare to freezing pretrained backbones in terms of both
performance and computational efficiency?

4. Parameter-Efficient Fine-Tuning: Can LoRA
adapters ranks achieve competitive performance while
substantially reducing trainable parameters?

Our contributions include: (1) A systematic empirical
study comparing architectural and training choices under
controlled conditions, (2) quantitative evaluation using stan-
dard retrieval metrics (Recall@K) on held-out test data, (3)
qualitative analysis through t-SNE visualization of learned
embedding spaces, and (4) practical insights into which
design decisions matter most for semantic image retrieval
when computational resources are constrained. Unlike prior
work that focuses on scaling to ever-larger datasets, we in-
vestigate how to maximize embedding quality within real-
istic resource constraints.

1.4. Dataset

We use the MS-COCO (Common Objects in Context)
dataset [12] as our primary benchmark. COCO contains
over 330,000 images spanning diverse everyday scenes,
with each image annotated with five human-written cap-
tions. This dataset has become a standard benchmark for
vision-language tasks and has been used to evaluate mod-
els ranging from VSE++ [4] to CLIP [13] and BLIP [11].
The dataset’s scale is large enough to train meaningful rep-
resentations while remaining computationally tractable for
academic research. We split the validation set into separate
validation and test subsets to evaluate retrieval performance
and identify overfitting during hyperparameter selection.

2. Approach
Our approach follows the dual-encoder paradigm estab-

lished by CLIP [13], where separate image and text en-
coders learn to map their respective inputs into a shared
embedding space through contrastive learning.

2.1. Model Architecture

Our model consists of an image encoder fI , a text en-
coder fT , and projection heads mapping encoder outputs
to a shared embedding space. For the image encoder, we
experiment with ResNet-50 [7] and Vision Transformers
(ViT-Base/16, ViT-Large/16 [14]). The text en-
coder uses BERT-base-uncased [3] throughout all ex-
periments. Both encoders leverage pretrained weights from
their respective domains (ImageNet for vision, large text
corpora for language).



Figure 2: Contrastive pre-training approach. Image and text en-
coders are jointly trained to maximize similarity for matched pairs
(diagonal, blue) while minimizing similarity for unmatched pairs.
The learned embeddings enable semantic alignment between vi-
sual and linguistic concepts. Image from [13].

Each projection head consists of a two-layer network
with ReLU activation, dropout, residual connections, and
layer normalization: Rdin → Rdemb → Rdemb . We set
demb = 512 and vary dropout between 0 and 0.2. A learn-
able temperature parameter τ (initialized to log(1/0.07))
scales similarity scores and is updated during training.

2.2. Contrastive Learning Objectives

Let I = {I1, . . . , IN} and T = {T1, . . . , TN} denote a
batch of N matched image-text pairs. After encoding and
projection, we obtain normalized embeddings vI

i and vT
j ,

and compute similarities Sij = vI
i · vT

j /τ .
CLIP Contrastive Loss. The standard loss uses sym-

metric cross-entropy:

LCLIP =
1

2N
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− log
eSii∑N
j=1 e

Sji

]
This treats each batch as multi-class classification where the
model identifies correct matches among all pairs.

Semi-Hard Negative Mining. Following VSE++ [4],
we focus on challenging negatives within margin m of the
positive: N (i) = {j : Sij > Sii − m, j ̸= i}. The loss
becomes:

Lsh =
1
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We set m = 0.2 and fall back to all negatives when no

semi-hard negatives exist.
SigLIP Sigmoid Loss. The SigLIP loss [17] treats each

pair as binary classification with Sij = vI
i ·vT

j · τ + b (bias
b initialized to −10.0):

Lsig = − 1

N2

∑
i,j

[yij log σ(Sij) + (1− yij) log(1− σ(Sij))]

where yij = 1 if i = j and 0 otherwise. This avoids
batch-wide normalization, enabling larger-scale training.

3. Experiments and Results
Our experimental approach systematically investigates

key factors affecting multimodal representation learning for
semantic image retrieval through five complementary ex-
periments tracked using Weights & Biases (W&B).

The core implementation follows a dual-encoder archi-
tecture where separate image and text encoders project in-
puts into a shared embedding space. The image encoder can
be ResNet or Vision Transformer, while the text encoder
uses BERT. Each encoder is followed by a projection head:
a two-layer network with ReLU activation, dropout, resid-
ual connections, and layer normalization. A learnable tem-
perature parameter, initialized to log(1/0.07), scales simi-
larity scores between embeddings.

For parameter-efficient fine-tuning, we employed LoRA,
which inserts trainable low-rank matrices into attention lay-
ers rather than updating entire backbones. We tested ranks
of 4, 8, 16, and 32. We implemented three loss func-
tions: standard CLIP contrastive loss (symmetric cross-
entropy), SigLIP sigmoid loss (independent pair treatment),
and semi-hard negative mining (VSE++ style, focusing on
challenging negatives).

3.1. Measuring Success

We evaluated models using bidirectional retrieval met-
rics namely Recall@K and Mean/Median Rank. Recall@K
(K=1,5,10) measures whether relevant items appear in top K
results given a query for both image-to-text (I2T) and text-
to-image (T2I). A higher Recall indicates a better perfor-
mance.

Recall@K =
Number of relevant items in the top K results

Total number of relevant items

Mean/Median Rank indicates the average position of
the first relevant item and Mean Recall averages Recall@K
values per direction. A lower Mean/Median Rank indicates
a better performance. We mainly report and focus on the
T2I figures as an evaluation metric, as it corresponds to the
semantic image retrieval task.

We also qualitatively and visually evaluate the top-4 re-
trieval results for a group of random text queries. The text
queries are designed such that they capture models capabil-
ity in two senses: (1) being able to generalize over synonym
concepts and retrieve same images for different synonym
words, and (2) being able to differentiate between images
with the same item but within different context.

3.2. Experiment 1: Image Backbone Comparison

This experiment compares ResNet-50 (convolutional)
against Vision Transformers (ViT-B/16, ViT-L/16) used



Table 1: Image Backbone Comparison (Full Fine-tuning). All
models trained for 5 epochs with batch size 64 on MS-COCO us-
ing BERT-base text encoder, 512-dim embeddings, and CLIP loss.

Backbone T2I R@1 T2I R@5 T2I R@10 Mean Rank

ResNet-50 8.32 31.33 44.30 63.42
ViT-B/16 9.29 33.61 47.45 50.75
ViT-L/16 11.04 38.95 53.11 43.41

as pre-trained image encoder backbones to understand
whether transformer-based vision models produce embed-
dings that generalize better for multimodal representations
and semantic retrieval. The hypothesis is that ViT may yield
richer global embeddings improving zero-shot synonym re-
trieval, while ResNet offers more stability and efficiency.

We tested three backbones with all other factors fixed:
BERT-base-uncased encoder, 512-dim embedding
space, CLIP contrastive loss, and full fine-tuning and low-
rank adaptation. All models trained for 5 epochs with batch
size 64, learning rate 10−5, and mixed precision. We mea-
sured retrieval performance, computational costs (training
time, GPU memory), and training dynamics, selecting the
best validation checkpoint for test evaluation.

Table 1 presents retrieval performance across three im-
age encoder architectures. Vision Transformers substan-
tially outperform ResNet-50: ViT-L/16 achieves 11.04%
R@1, 38.95% R@5, and 53.11% R@10—improvements of
32.7%, 24.3%, and 19.9% respectively. ViT-B/16 shows in-
termediate performance, confirming that both architectural
paradigm and model capacity contribute to gains.

Figure 3 reveals critical training dynamics. ResNet-50
begins with higher initial loss (4.82 vs. 4.1 for ViTs), sug-
gesting pretrained transformer features provide better ini-
tialization. However, all models converge to similar final
losses (0.30-0.35) after 50,000 steps. This convergence de-
spite divergent validation performance indicates that equiv-
alent training loss does not guarantee equivalent representa-
tion quality, a key finding for model selection.

Validation metrics in Figure 4 show all models perform-
ing identically until step 40,000, when clear separation
emerges. ViT-L/16 maintains consistent advantage through-
out remaining training, with gaps persisting rather than
closing. This sustained hierarchy suggests fundamental ca-
pacity differences rather than optimization artifacts.

3.3. Experiment 2: Full Fine-tuning vs Frozen
Backbone

This experiment assesses the performance-efficiency
trade-off between full fine-tuning and frozen-backbone
training, where only projection layers is updated. The hy-
pothesis is that full fine-tuning will outperform frozen train-
ing but at significantly higher computational cost.

Using ViT-B/16 from Experiment 1, we compared both
strategies with identical settings (CLIP loss, batch size 64,

Figure 3: Training loss curves over 5 epochs (∼92,000 steps). All
models reach similar final loss despite divergent validation perfor-
mance, revealing that training loss alone is insufficient for evalu-
ating representation quality.

Figure 4: Text-to-image retrieval performance throughout training.
Architectural hierarchy emerges after step 40,000 and persists, in-
dicating fundamental capacity differences.

5 epochs) but different learning rates: 10−3 for frozen (2-
3M trainable params) and 10−5 for full fine-tuning (150M
params). We measured retrieval performance and com-
putational costs, presenting results as performance-vs-cost
curves.

Table 2 reveals frozen backbone training catastrophically
fails on MS-COCO. ViT-B/16 frozen achieves near-zero
performance (0.01% R@1) due to unstable training and
collapsing during training, while ResNet-50 frozen reaches
only 2.83% which is 66% worse than full fine-tuning. Full
fine-tuning delivers strong results: ViT-B/16 at 9.29% R@1,
ResNet-50 at 8.32% R@1.

Frozen models achieve lower training loss (∼0.2 vs.
∼0.35 for fine-tuned) yet dramatically worse validation
performance (Figure 5), revealing mismatch between pre-
trained features and contrastive objectives. Validation pro-
gression (Figure 6) shows frozen models stagnate or fail
while fine-tuned models steadily improve.



Table 2: Training Strategy Comparison. Frozen trains only projec-
tions (2-3M params); full fine-tuning updates all weights (150M
params). Both use batch size 64, CLIP loss, 5 epochs.

Strategy T2I R@1 T2I R@5 T2I R@10 Mean Rank

Frozen Backbones
ResNet-50 2.83 12.05 19.24 208.00
ViT-B/16 0.01 0.04 0.08 6254.00

Full Fine-tuning
ResNet-50 8.32 31.33 44.30 63.42
ViT-B/16 9.29 33.61 47.45 50.75

Figure 5: Training loss comparison across models using full fine-
tuning or frozen backbones.

Figure 6: Validation progression showing frozen backbones stag-
nate while full fine-tuning improves steadily.

3.4. Experiment 3: LoRA Rank Exploration

This experiment investigates whether LoRA at various
ranks (4, 8, 16, 32) can approach full fine-tuning perfor-
mance while maintaining parameter efficiency. The hypoth-
esis is that moderate ranks (8-16) achieve strong perfor-
mance with dramatic parameter reduction, while very low
ranks (4) may underfit and very high ranks (32) provide di-
minishing returns.

Using ViT-B/16 and BERT, we applied LoRA to atten-

Table 3: LoRA Rank Ablation on ViT-B/16. All models use batch
size 64, CLIP loss, 10 epochs. Performance saturates beyond r =
8.

LoRA Rank T2I R@1 T2I R@5 T2I R@10 Mean Rank

r = 4 8.81 32.41 45.91 52.44
r = 8 9.29 33.61 47.45 50.75
r = 16 9.38 33.75 47.89 50.04
r = 32 9.22 33.93 47.66 52.28

Table 4: Parameter Efficiency. LoRA achieves full fine-tuning per-
formance with <2% trainable parameters.

Config Total (M) Train. (M) Train. % R@1

r = 4 197.48 1.61 0.82 8.81
r = 8 197.78 1.90 0.96 9.29
r = 16 198.37 2.49 1.26 9.38
r = 32 199.55 3.67 1.84 9.22

Full FT 198.37 198.37 100.0 9.29

tion layers (Query and Value projections) with alpha equal
to rank and 0.2 dropout. All configurations used batch size
64, CLIP loss, and 10 epochs. We measured retrieval met-
rics, trainable parameters (count and percentage), and com-
putational costs, constructing performance-vs-cost curves
and comparing against full fine-tuning and frozen-backbone
results.

Table 3 reveals flat performance across LoRA ranks 4-
32, with all configurations achieving 8.81-9.38% R@1. The
optimal r = 16 (9.38% R@1) matches full fine-tuning
(9.29%) while using only 1.26% trainable parameters (Ta-
ble 4).

3.5. Experiment 4: Loss Function Comparison

This experiment compares three contrastive objectives:
standard CLIP loss (symmetric cross-entropy), SigLIP
(sigmoid-based, independent pairs), and semi-hard negative
mining (VSE++, focusing on challenging negatives). The
hypothesis is that CLIP loss achieves highest overall per-
formance, semi-hard mining improves fine-grained ranking,
and SigLIP provides most stable optimization.

To isolate loss effects, we used ResNet-50 with frozen
backbone across all three conditions, training only projec-
tion layers. All experiments used batch size 64, 5 epochs,
and learning rate 10−3. For semi-hard loss, we set margin
to 0.2; for SigLIP, bias initialized to -10.0. We evaluated
Recall@K, mean rank, and training stability.

Table 5 compares three contrastive objectives using
frozen ResNet-50 to isolate loss effects. All perform simi-
larly poor (2.3-2.8% R@1), with CLIP loss marginally best.

Training dynamics (Figure 7) show SigLIP converging
to higher loss (∼1.9) despite comparable validation per-
formance, again demonstrating training-validation discon-
nect with frozen encoders. Validation progression (Fig-
ure 8) reveals highly unstable learning across all losses,
with erratic oscillations throughout training. All converge



Table 5: Loss Function Comparison with frozen ResNet-50. All
losses fail similarly due to frozen backbone bottleneck. Batch size
64, 5 epochs.

Loss Function T2I R@1 T2I R@5 T2I R@10 Mean Rank

SigLIP [17] 2.39 10.27 16.58 245.02
Hard Negative [4] 2.71 11.93 19.56 207.31
Contrastive [13] 2.83 12.05 19.24 208.00

Figure 7: Training loss trajectories. SigLIP reaches higher loss but
comparable validation performance.

Figure 8: Validation progression showing rather unstable but in-
creasingly improving training. Instability indicates frozen en-
coders prevent stable learning.

to ∼12% R@5 but maintain significant noise, contrasting
sharply with smooth curves from fine-tuned experiments.

3.6. Qualitative Retrieval Analysis

We conducted qualitative evaluation of our best model’s
(ViT-L/16+BERT) retrieval through synonym matching
and concept differentiation tests. For synonym matching
across five concept groups (Aircraft, Cat, Dog, Television,
Vehicle), the model achieves strong semantic clustering for
common synonyms (0.80+ similarity) with consistent re-
trieval, but struggles with low-frequency terms and regional
colloquialisms. For concept differentiation across four at-
tribute types (Size, Texture, Action, Style), the model suc-

cessfully differentiates actions through salient visual fea-
tures but shows limited capability for fine-grained attribute
distinctions like material texture or relative size. Detailed
analysis with retrieval visualizations and similarity ma-
trices is provided in Appendices A and B.

4. Discussion
We conducted this study to understand which design de-

cisions matter most when training multimodal image-text
retrieval models under realistic limited resource constraints.
Using the MS-COCO dataset, we trained CLIP-style dual
encoders and systematically tested the effect of hyperpa-
rameters such as image backbone, fine-tuning strategy, and
loss function to isolate their impact on semantic retrieval.
Our approach allowed us to evaluate how each choice af-
fects both performance and computational efficiency, pro-
viding practical guidance for building models that general-
ize well without requiring large-scale computation.

Backbone architecture was the single largest contribu-
tor to performance differences. Vision Transformers signif-
icantly outperformed ResNet-50 on every retrieval metric
when trained under identical conditions. Their global self-
attention provides stronger semantic representations and
better alignment with text. All models reached nearly iden-
tical training losses, meaning that validation metrics are
most important for predicting representation quality.

Training strategy had the second-largest impact. Full
fine-tuning of encoders was essential as frozen backboned
had extremely poor performance for ViT and weak results
for ResNet, regardless of loss function. Training only the
projection layer could not adapt pretrained features to the
contrastive objective.

LoRA fine-tuning provided the most effective middle
ground. Low-rank adaptation allowed the model to up-
date only 1–2% of parameters while matching or slightly
exceeding the performance of full fine-tuning. Ranks be-
tween 8 and 16 captured nearly all variation, meaning that
the trainable parameters are a low-dimensional subspace.

Loss function choice mattered far less than training
strategy. With frozen encoders, CLIP loss, SigLIP, and
semi-hard negative mining all performed similarly poorly
because of the encoder bottleneck. While CLIP loss re-
mained slightly better overall, the results show that loss re-
finements may only help once the model has enough capac-
ity to learn meaningful representations.

Putting all together, the most effective model configura-
tion is one that uses a ViT image encoder, LoRA fine-tuning
of Rank 16, and CLIP contrastive loss. This model pro-
duced strong semantic grouping where embeddings of the
same category group together regardless of modality (Fig-
ure 1). These findings help clarify which design decisions
matter most when building well-performing multimodal re-
trieval models under resource-constrained conditions.



Student Name Contributed Aspects Details
Spencer Uresk Model Architecture Built the foundation for image and text encoders and pro-

jections to the shared space. Allowed for backbone and
hyperparameter swapping for experimentation.

Yasir Salman Data Loading and Preprocessing Pulled training and validation images from COCO dataset
and split into Train/Val/Test Dataloaders. Normalized
and augmented images for stable training.

Ebrahim Pichka Training and Evaluation Created the training script for the model. Implemented
the loss types and metrics that were used for evaluation.

Felipe Oliveira Experimentation and Results Built the evaluation procedure to compare training and
validation performances. Compiled the performance out-
puts from the hyperparameter tuning into interpretable re-
sults.

Table 6: Contributions of team members.

5. Work Division
Our team divided the project into broad roles to keep

the workflow organized. Spencer focused on the model
architecture, Yasir handled data loading and preprocess-
ing, Ebrahim worked on training and evaluation, and Fe-
lipe managed experimentation and results. Even though we
each had a main area of focus, our different computational
limitations meant the roles weren’t completely rigid. When-
ever someone finished their part or couldn’t run certain ex-
periments, they helped teammates with theirs, whether that
meant debugging code, running additional tests, or review-
ing outputs. This flexible setup allowed us to keep all parts
of the project moving in parallel and made the final outcome
feel like a collaborative effort.
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A. Qualitative Analysis: Synonym Matching
Capability

To evaluate whether our trained model captures true se-
mantic relationships rather than memorizing exact caption
wording, we designed a synonym matching test. This evalu-
ation addresses the practical limitation highlighted in our in-
troduction: conventional retrieval systems fail when query
terms differ from training captions, even when semantically
equivalent. We constructed five concept groups where each
contains 3-4 synonym queries referring to the same underly-
ing concept, then measured both text embedding similarity
and retrieval consistency.

A.1. Text Embedding Analysis

Figures 9 through 13 display cosine similarity matrices
between synonym text embeddings for five concept groups:
Aircraft, Cat, Dog, Television, and Vehicle. The matrices
reveal strong semantic clustering with similarity scores con-
sistently above 0.80 for within-concept comparisons. For
the Aircraft group (Figure 9), queries “A plane,” “An air-
plane,” “An aircraft,” and “A jet” achieve pairwise similar-
ities ranging from 0.91 to 0.98, indicating the text encoder
successfully maps these lexically distinct but semantically
equivalent terms into nearby regions of embedding space.

The Cat group (Figure 10) exhibits particularly inter-
esting patterns. While “cat,” “kitty,” and “kitten” form a
tight cluster with similarities of 0.84-0.88, the term “feline”
shows lower similarity (0.56-0.64) to other variants. This

Figure 9: Text similarity matrix for Aircraft synonyms. High sim-
ilarity scores (0.91-0.98) demonstrate semantic clustering of lexi-
cally distinct but conceptually equivalent terms.

Figure 10: Text similarity matrix for Cat synonyms showing strong
alignment between “cat,” “feline,” “kitty,” and “kitten” (0.56-
0.88).

suggests the model has learned stronger associations be-
tween colloquial terms (“cat,” “kitty”) that likely co-occur
more frequently in natural language captions, while the
more formal term “feline” occupies a slightly different se-
mantic neighborhood. Despite this variation, all terms re-
main sufficiently close to enable effective retrieval.

The Dog group (Figure 11) mirrors this pattern with
“dog,” “pup,” and “puppy” forming a coherent cluster (0.74-
0.88), while “canine” maintains moderate distance (0.55-
0.84). For Television (Figure 12), “tv” and “television”
achieve near-perfect alignment (0.99), reflecting their fre-
quent co-occurrence as abbreviation and full form. How-



Figure 11: Text similarity matrix for Dog synonyms. The
model learns strong associations between informal terms (“dog,”
“puppy”: 0.88) while formal term “canine” shows moderate sepa-
ration (0.55-0.84).

Figure 12: Text similarity matrix for Television synonyms demon-
strating near-perfect alignment between “tv” and “television”
(0.99) while colloquial “telly” shows distinct separation (0.50-
0.51).

ever, the British colloquialism “telly” shows marked sepa-
ration (0.50-0.51), likely due to its geographic and cultural
specificity reducing training data occurrence.

The Vehicle group (Figure 13) demonstrates hierarchical
semantic structure. Generic terms “car,” “automobile,” and
“vehicle” cluster tightly (0.87-0.88), while the more specific
“motorcar” exhibits lower similarity (0.56-0.81). This hier-
archy suggests the model has learned conceptual abstraction
levels, where broader category terms occupy overlapping
regions while specialized variants maintain slight separa-

Figure 13: Text similarity matrix for Vehicle synonyms. Generic
terms (“car,” “automobile,” “vehicle”) cluster tightly (0.87-0.88)
while specific term “motorcar” shows lower similarity (0.56-0.81).

tion.

A.2. Retrieval Consistency Analysis

Figures 14 through 18 present top-4 retrieval results for
each synonym query, revealing whether embedding sim-
ilarity translates to consistent image retrieval. The Air-
craft queries (Figure 14) demonstrate strong retrieval con-
sistency: all four synonym terms retrieve highly overlap-
ping sets of aircraft images with similarity scores ranging
from 0.525 to 0.587. Notably, retrieved images span diverse
aircraft types (commercial jets, military fighters, propeller
planes, cargo aircraft), indicating the model generalizes be-
yond specific visual attributes to capture the abstract aircraft
concept.

For the Cat group (Figure 15), queries “cat,” “kitty,” and
“kitten” reliably retrieve domestic cat images with scores
of 0.511-0.565. However, “feline” produces mixed results,
including giraffe images among top retrievals. This aligns
with the text similarity analysis showing “feline” as an out-
lier, confirming that the biological taxonomy term activates
a broader semantic region encompassing various feline-like
animals rather than specifically domestic cats. This illus-
trates a known challenge in contrastive learning: overgen-
eralization to superordinate categories when training data
lacks sufficient specific examples.

The Dog retrievals (Figure 16) show excellent con-
sistency across all synonym queries, with scores ranging
from 0.490 to 0.625. Retrieved images span various dog
breeds, sizes, and contexts (indoor/outdoor), demonstrating
the model’s ability to abstract beyond superficial visual fea-
tures. Even the formal term “canine,” despite lower text
similarity scores, successfully retrieves relevant dog im-



Figure 14: Top-4 image retrieval for Aircraft synonyms. Consis-
tent retrieval across all queries demonstrates robust semantic gen-
eralization beyond exact wording.

Figure 15: Top-4 image retrieval for Cat synonyms showing con-
sistent cat image retrieval despite query “feline” returning some
giraffe images, revealing partial semantic confusion.

ages, suggesting the retrieval robustness benefits from the
broader semantic neighborhood learned during training.

Television queries (Figure 17) reveal both success and
failure modes. “Tv” and “television” produce nearly iden-
tical retrievals (scores 0.622-0.666) with consistent televi-
sion images across different settings. However, “telly” fails
significantly, retrieving microwave ovens instead of televi-
sions. This failure correlates with the low text similarity
(0.50) and likely stems from insufficient training examples
containing the colloquial term, causing the model to asso-
ciate it with visually similar appliances rather than semantic
equivalents.

The Vehicle group (Figure 18) demonstrates semantic

Figure 16: Top-4 image retrieval for Dog synonyms. All queries
successfully retrieve dog images (0.490-0.625) with diverse breeds
and contexts.

Figure 17: Top-4 image retrieval for Television synonyms. “Tv”
and “television” retrieve identical results (0.622-0.666) while
“telly” shows confusion with microwave images.

hierarchy in action. “Car,” “automobile,” and “vehicle”
consistently retrieve automobile images with high scores
(0.553-0.617), spanning sedans, trucks, and service vehi-
cles. However, “motorcar” produces motorcycle images in-
stead, revealing fine-grained semantic confusion between
compositionally similar terms. This suggests the model has
learned morphological associations (“motor + car”) that oc-
casionally override distributional semantics when training
data is sparse for archaic terminology.

A.3. Findings and Implications

The synonym matching analysis reveals both the capa-
bilities and limitations of our contrastive learning approach.
The model successfully learns semantic equivalence for
common synonym groups, achieving high embedding simi-
larity (0.80+) and consistent retrieval across lexically dis-
tinct queries. This demonstrates that contrastive training



Figure 18: Top-4 image retrieval for Vehicle synonyms showing
strong retrieval for “car” queries (0.553-0.617) but “motorcar” re-
trieves motorcycles, revealing fine-grained semantic confusion.

on MS-COCO’s caption diversity enables generalization be-
yond exact wording to conceptual understanding.

However, several failure patterns emerge. Terms with
lower frequency in natural language (“feline,” “telly,” “mo-
torcar”) show reduced semantic alignment and retrieval ac-
curacy. This indicates that contrastive learning’s effective-
ness depends critically on term co-occurrence patterns in
training data rather than learning abstract lexical relation-
ships. The model struggles with formal/technical terms, re-
gional colloquialisms, and archaic vocabulary that appear
less frequently in modern web-sourced captions.

Additionally, the model occasionally overgeneralizes to
superordinate categories (“feline” retrieving giraffes) or
confuses compositionally similar terms (“motorcar” retriev-
ing motorcycles). These errors suggest limitations in han-
dling hierarchical taxonomies and morphological reason-
ing, areas where contrastive learning without explicit lin-
guistic supervision remains weak.

For practical deployment, these findings suggest that
synonym-robust retrieval requires either massive training
data covering diverse vocabulary, or hybrid approaches in-
corporating explicit synonym expansion at query time. The
current model handles common informal vocabulary well
but requires query preprocessing (mapping “telly” → “tele-
vision”) for robust handling of specialized, regional, or ar-
chaic terms.

B. Qualitative Analysis: Concept Differentia-
tion Capability

While synonym matching evaluates semantic clustering,
concept differentiation assesses whether the model learns
fine-grained distinctions between related but distinct con-

Figure 19: Text similarity matrix for Size descriptors showing gra-
dient structure with high within-cluster similarity and moderate
between-cluster separation.

cepts. We designed four differentiation tests examining at-
tributes (Size, Texture), actions (Action), and styles (Style),
where lexical similarity is high but semantic distinctions are
critical for accurate retrieval.

B.1. Size Differentiation

Figure 19 presents the text similarity matrix for size de-
scriptors applied to houses: “tiny house,” “small house,”
“large house,” and “huge house.” The matrix reveals a gra-
dient structure with high similarity between adjacent size
terms (0.83-0.98) and moderate similarity between extreme
pairs (0.81-0.86). This gradient indicates the model has
learned relative rather than absolute size representations,
where “tiny” and “small” occupy nearby regions, as do
“large” and “huge,” while the two clusters maintain sepa-
ration.

The retrieval results (Figure 20) demonstrate partial suc-
cess in translating this gradient to visual differentiation.
“Tiny house” retrieves compact interior spaces and small
residential structures (scores 0.565-0.593), successfully
capturing the compact scale concept. “Small house” main-
tains this trend with single-story residences and modest
buildings (0.564-0.581). However, “large house” and “huge
house” show considerable overlap with “small house” re-
trievals rather than consistently retrieving mansions or large
structures (0.594-0.631).

This mixed performance reveals a fundamental chal-
lenge in grounding relative attributes through contrastive
learning. While the model captures ordinal relationships
in text space, translating these to visual scale requires un-
derstanding perspective, context, and comparative reference
frames. Training captions rarely provide explicit size com-



Figure 20: Top-4 image retrieval for Size descriptors. Model suc-
cessfully differentiates “tiny” but struggles to consistently retrieve
progressively larger structures for “large” and “huge.”’

parisons (“this house is larger than that one”), forcing the
model to learn size concepts from distributional patterns
alone, which proves insufficient for consistent differentia-
tion.

B.2. Texture Differentiation

Figure 21 shows text similarity for material descriptors:
“wooden table,” “glass table,” “metal table,” and “plastic
table.” The matrix exhibits moderate similarity (0.87-0.91)
among all terms, suggesting the model groups them primar-
ily by the shared “table” concept rather than material prop-
erties. This clustering indicates that compositional structure
(“[material] + [object]”) creates high baseline similarity, po-
tentially masking fine-grained material distinctions.

Retrieval results (Figure 22) confirm this limitation. All
texture queries successfully retrieve table images (scores
0.562-0.646), demonstrating robust object recognition.
However, material consistency is limited: “wooden table”
retrievals include various furniture pieces, “glass table” re-
turns mixed dining and decorative tables, “metal table”
shows office furniture and equipment, and “plastic table”
retrieves diverse table types without clear material speci-
ficity.

This pattern reveals that contrastive learning prioritizes
object category (“table”) over attributes (“wooden”) when
both appear in composite descriptions. During training, im-
ages with captions like “wooden table” are contrasted pri-
marily against images of different objects (“chair,” “lamp”),
with insufficient negative examples of “glass table” or
“metal table” in the same batch. Consequently, the model
learns strong category boundaries but weak within-category
attribute differentiation, a known limitation of batch-based
contrastive learning without hard negative mining.

Figure 21: Text similarity matrix for Texture descriptors showing
strong clustering around shared “table” concept (0.87-0.91) with
limited material differentiation.

Figure 22: Top-4 image retrieval for Texture descriptors. Model
successfully identifies table objects but shows limited material
specificity in top retrievals.

B.3. Action Differentiation

Figure 23 presents similarity for action descriptors in
identical contexts: “person running in a field,” “person sit-
ting in a field,” “person jumping in a field,” and “person
walking in a field.” The matrix shows clear action-based
clustering: “running” and “walking” are highly similar
(0.92), “sitting” groups separately (0.67-0.88), and “jump-
ing” occupies an intermediate position (0.76-0.86).

Retrieval analysis (Figure 24) demonstrates excellent ac-
tion differentiation. “Person running in a field” retrieves
images showing running motion with high scores (0.600-
0.682). “Person sitting in a field” consistently returns seated



Figure 23: Text similarity matrix for Action descriptors show-
ing clear clustering based on action dynamics: locomotion (run-
ning/walking: 0.92) vs. static posture (sitting).

Figure 24: Top-4 image retrieval for Action descriptors. Model
successfully differentiates action types, retrieving contextually ap-
propriate human poses and motions.

poses in outdoor settings (0.608-0.625). “Person jumping in
a field” successfully captures mid-air poses (0.591-0.604),
and “person walking in a field” retrieves walking motion
frames (0.642-0.697).

This success indicates that action verbs create strong se-
mantic gradients in the learned embedding space, likely be-
cause actions manifest as distinctive visual features (body
pose, motion blur, spatial positioning) that contrastive
learning can exploit. Unlike abstract attributes (size, ma-
terial), actions produce salient visual differences that align
naturally with caption distinctions, enabling the model
to learn robust action differentiation from the MS-COCO

Figure 25: Text similarity matrix for Style descriptors showing
very high similarity (0.91-0.98) with limited differentiation be-
tween artistic mediums.

training distribution.

B.4. Style Differentiation

Figure 25 shows text similarity for artistic styles ap-
plied to flowers: “photograph of a flower,” “painting of a
flower,” “sketch of a flower,” “cartoon of a flower,” and
“drawing of a flower.” The matrix reveals high similarity
across all style terms (0.91-0.98), suggesting the model pri-
marily groups them by content (“flower”) rather than artis-
tic medium. The distinction between drawing-related terms
(“sketch,” “drawing”: 0.98) and rendered styles (“painting,”
“cartoon”: 0.95-0.97) is subtle.

Retrieval results (Figure 26) show mixed style differ-
entiation. “Photograph of a flower” successfully retrieves
photographic flower images with consistent realism (scores
0.600-0.623), indicating the model distinguishes photo-
graphic rendering from other media. However, “painting,”
“sketch,” “cartoon,” and “drawing” show significant over-
lap in retrievals (0.552-0.617), with most returning pho-
tographic or naturalistic flower images rather than distinc-
tively stylized content.

This limitation reflects MS-COCO’s inherent bias to-
ward photographic images. The dataset contains primarily
real-world photographs with few artistic renderings, styl-
ized graphics, or illustrations. Without sufficient training
examples of paintings, sketches, or cartoons, the model can-
not learn distinctive visual features associated with these
style terms. Consequently, style descriptors behave pri-
marily as semantic null operators, leaving the content term
(“flower”) as the dominant retrieval signal.



Figure 26: Top-4 image retrieval for Style descriptors. Model
shows partial success: “photograph” reliably retrieves realistic im-
ages (0.600-0.623) while other styles show mixed media types.

B.5. Findings and Implications

The concept differentiation analysis reveals domain-
specific strengths and weaknesses in the model’s ability to
learn fine-grained distinctions. Action differentiation suc-
ceeds because actions manifest as salient visual features
(body pose, motion) that align naturally with linguistic dis-
tinctions. The model learns robust mappings between action
verbs and corresponding visual patterns, achieving high re-
trieval accuracy.

In contrast, attribute differentiation (size, material, style)
proves challenging. Size requires understanding relative
scale and perspective, materials demand recognizing subtle
visual textures, and styles presuppose familiarity with artis-
tic conventions—all requiring richer inductive biases than
contrastive learning provides. The model learns object cat-
egories robustly but treats compositional attributes as sec-
ondary, often ignored signals.

Dataset composition critically constrains differentiation
capability. MS-COCO’s photographic bias prevents learn-
ing style distinctions, its diverse scales complicate size
learning, and material co-occurrence patterns are insuffi-
cient for texture differentiation. These limitations sug-
gest that achieving human-level fine-grained understand-
ing requires either massive-scale training with balanced
attribute distributions, explicit compositional reasoning
mechanisms, or hybrid approaches incorporating structured
attribute representations.

For practical applications, these findings recommend
against relying solely on contrastive models for fine-grained

attribute-based search. Queries involving materials, sizes,
or artistic styles require fallback strategies: query expansion
(“large house” → “mansion”), explicit attribute filters (post-
hoc size filtering), or hybrid systems combining embedding
similarity with metadata-based constraints. Actions and ob-
ject categories remain the model’s strength, suitable for di-
rect semantic retrieval.


